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Abstract

We consider the role of time ordering in the production of multiply charged ions by examining the role of time ordering
in two-electron transitions such as double ionization of atoms in fast ion–atom and photon–atom collisions. If two or more
electrons are uncorrelated in space, then transitions of these electrons evolve independently in time. If the electrons are
correlated, then the transition of one electron can affect the time evolution of the other electron. In the interaction picture
correlation in time is carried by the part of the time-ordering operatorT which is antisymmetric in time. It is this part ofT that
gives nonequal weight to the time ordering of the interactions causing the electron transitions. The antisymmetric part ofT is
nonzero only if electron correlation is present. Thus, correlation in time between transitions of different electrons is connected
to spatial electron correlation due to the electron–electron interaction. We also note an invariance in the product of the time
and charge symmetry of the projectile in fast ion–atom collisions. Consequently, effects of the antisymmetric part ofT may
be found in regions where there are substantial contributions antisymmetric in the projectile charge,Z (e.g.Z3 contributions)
to transition probabilities and cross sections, as evident in double ionization of atoms and molecules. (Int J Mass Spectrom 192
(1999) 65–73) © 1999 Elsevier Science B.V.
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1. Introduction

In interactions of atoms and ions with other atoms
and ions as well as with photons, it is possible for
more than one electron to make a transition. Indeed
this is one way in which multiply charged ions may be
produced, namely multiple ionization in a single
collision. One of the simplest cases is that of fast

double ionization which is relatively easy to observe. In
ion–atom collisions the high velocity limit of double
ionization is dominated by dynamics of electron corre-
lation [1–3], and at moderately high velocities there is an
interplay between electron–electron and electron–pro-
jectile mechanisms—a so-calledZ3 regime since the
cross sections include effects of the third power of the
projectile ion chargeZ [2,4]. TheZ3 terms are nonzero
only if electron correlation is included.

In these fast collisions the transitions are often
thought to occur simultaneously. Here the transit time
of the projectile is small compared to the orbit time of
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the target electrons. In contrast, in very slow ion–atom
collisions two transitions may be sufficiently sepa-
rated in time that they are incoherent and one may
think about two separate events occurring in a well-
ordered time sequence. The main point of this article
is to explore the gap between simultaneous and
sequential transitions and to relate effects of coherent
time ordering of moderately fast two-electron transi-
tions to electron correlation.

In this article we shall focus on velocities several
times faster than the orbit time of the target electrons.
It is in this regime thatZ3 effects are relatively large.
It has been previously noted that effects of time
ordering between the transitions are required for
nonzeroZ3 effects [5–9]. We shall elaborate upon this
point and detail the connections between time order-
ing of different electron transitions and electron cor-
relation. In other words we shall explore the intercon-
nection between correlation in space and time in
transitions of two electrons. In addition we note an
invariance of observable transition probabilities and
cross sections with regard to the product of the sign of
the projectile charge and the time symmetry of the
projectile interaction. This projectile charge time
symmetry will be compared to the more general
charge conjugation and time reversal symmetries (#
and 7) which independently hold for the purely
electromagnetic interactions considered here.

2. Formulation

In general, the probability amplitude for one or
more transitions in a many-electron system may be
written as the projection of the full time-dependent
many-electron wave functionCi(t) onto a specified
final state,

afi 5 ^fuC i~t3 1`!&

5 ^fuUI~tf 3 1`, ti3 2`!ui & (1)

HereUI(ti, tf) is the evolution operator that describes
the time development of the system fromti to tf due
to an explicitly time-dependent interactionVI(t). The
subscriptI indicates that we will use the interaction

representation where the correlated eigenstatesus& of
an atomic HamiltonianH0 are considered as known
and UI provides the time-dependent change in the
total wave functionC(t) due to a known interaction
VI(t). In the interaction representationVI(t) 5

e2iH0tV(t)eiH0t whereV(t) is an interaction external
to the many-electron target.UI satisfies the following
equation (we takeÉ 5 1).

­UI /­t 5 iVI~t!UI (2)

This can be integrated to give

UI~tf , ti! 5 T exp F i E
ti

tf

VI~t! dtG
5 1 1 i E

ti

tf

VI~t9! dt9

1
~i!2

2! E
ti

tf

T VI~t0!VI~t9! dt0 dt9 1 . . . (3)

whereT is the time-ordering operator which insures
thatVI(t0) occurs afterVI(t9) for t0 . t9, as described
in the following. In a perturbation expansion the
effects of time ordering first appear in the second-
order term.

Time ordering:The interactionV(t) may change
the energyE. Causality is imposed on the time order
(or sequencing) of the interactions by requiring that
V(t0) occur afterV(t9). The time ordering comes
from integration of Eq. (2) and arises directly from the
time-dependent Schro¨dinger’s equation. This time
ordering may be expressed by a Heavyside function
Q(t0 2 t9) 5 1 (or 0), if t0 . t9 (or if t9 . t0). Thus
in the matrix elements in Eq. (1), time propagation is
expressed as,T 5 2Q(t0 2 t9).

Time ordering has been recently observed in inter-
actions of photons with atoms [25]. These effects
arise in observable phase dependence of resonance
fluorescence spectra. In interactions with charged
particles time ordering of two transitions has been
considered by various authors [3,5–7].
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O
s

Vfs~t0!e
iEs~t02t9!Vsi~t9! ~without time ordering!

(4)

O
s

Vfs~t0!Q~t0 2 t9!eiEs~t02t9!Vsi~t9! ~with time ordering)

The sum over intermediate statess is consistent with
the Uncertainty Principle, where the uncertainty in
time may be often estimated by the collision time.

3. Multiple-electron transitions

Let us consider a two-electron transition for sim-
plicity. The more generalN-electron case follows the
same general pattern. For two electrons, the interac-
tion is assumed to be a linear sum of terms, namely,

VI~t! 5 VI1~t! 1 VI2~t! (5)

The subscripts 1 and 2 refer to the two electrons. We
emphasize that theVIj (t) operators are not single
electron operators in the interaction representation.
Specifically,VIj (t) 5 e2iH0tVj(t)e

iH0t whereVj(t) is
a one electron operator, andH0 is the Hamiltonian of
the atom including correlation. That is,H0 5 ¥j

H0j 1 ¥j ,k vjk, wherevjk is a correlation interaction
(such as 1/r jk) that couples electrons. BecauseH0

includes correlationVIj (t) is a many-electron operator
and it affects all electrons. The main point of this
article is that this spatial correlation leads to a time
correlation of the multiple-electron time-dependent
transition amplitudes and transition probabilities.

At this point we neglect exchange. Neglect of
exchange is plausible in fast collisions [3]. Neglecting
exchange allows one to regard the electrons as distin-
guishable. This is conceptually helpful. When ex-
change is not small, the mathematical development is
expected to be similar, but the simplifying conceptual
picture will be lost.

As an instructive example, let us now consider the
second-order term in the evolution operator of Eq. (3)
in a two-electron system without exchange. Specifi-
cally, consider

UI
~2!~tf , ti! 5

~i !2

2! E
ti

tf E
ti

tf

T VI~t0!VI~t9! dt0 dt9

5
~i !2

2! E
ti

tf E
ti

tf

T @VI1~t0! 1 VI2~t0!#

3 @VI1~t9! 1 VI2~t9!# dt0 dt9

5
~i !2

2! E
ti

tf E
ti

tf

T @VI1~t0!VI1~t9!

1 VI2~t0!VI2~t9!] dt0 dt9

1
~i !2

2! E
ti

tf E
ti

tf

T @VI1~t0!VI2~t9!

1 VI2~t0!VI1~t9!] dt0 dt9 (6)

The first two terms contain no cross terms in the 1, 2
electron indices. No time correlation between differ-
ent electrons may arise from these terms since only
one electron is affected by theT operator. Two-
electron transitions arise from these terms only if
electron–electron interactions cause one of the tran-
sitions. Furthermore, through second-order inV(t) it
is only the cross terms where time evolution of one
electron can affect a transition of another electron.

3.1. Uncorrelated limit

The independent-electron approximation is
reached in the limit that electron correlation is negli-
gibly small, i.e. the uncorrelated limit wherevjk3 0.
Again, here we neglect electron exchange which will
allow us to consider distinguishable electrons. Elec-
tron exchange usually vanishes rapidly as the energy
of the projectile increases [3]. In this uncorrelated
limit without exchange it is physically obvious that
transitions of two (or more) electrons are independent.
There is no connection in space and the transitions
occur independently in time.

In the uncorrelated limit, theVI(t) operators reduce
to single electron operators. This occurs because the
unperturbed HamiltonianH0 contains no electron
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correlation so that nowH0 5 ¥j H0j is a simple sum
of independent terms. Then,eiH0t 5 ei¥ jH0j t 5

) je
iH0j t so that all theeiH0j t terms inVI(t) commute

with Vj(t) except the terms withk 5 j in the defini-
tion of VI(t) below Eq. (5). NowVIj (t) andVIk(t) are
single electron operators that commute with each
other. In the second-order terms of Eq. (6), in the
absence of any electron–electron interaction only the
cross terms of Eq. (6) contribute to two-electron
transitions since all other terms involve one electron
operators which give no contribution to a two-electron
transition. AlthoughT Þ 1 may influence the transi-
tion of one electron, there is no coupling between
electrons and so the time-ordering operators in cross
terms inVIj (t0)VIk(t9) have no influence and one may
replace T by T 5 Tav 5 1 in second-order cross
terms. All matrix elements are independent one-
electron matrix elements. Time evolution overt9 is
decoupled from evolution overt0 in the absence of
correlation.

More generally, it is easily shown [3] in the
interaction picture that in the absence of electron
correlation, the quantum probability amplitude for a
multiple electron systemA(1, 2, 3, . . . ,N) may be
expressed as a product of independent single electron
probability amplitudes)jaj, i.e.,

A~1, 2, 3, . . . ,N; t! 5 ^)j fju)jUIj u) ji j&

5 ) j^fjuUIj ui j&

5 ) j aj~t! ~IEA! (7)

This defines the independent-electron approximation
(IEA) (without exchange). Energy is independently
transferred by the projectile to each of the electrons.
There is no time correlation between the various
transitions between the states of theN-independent
electrons. The clocks of the transitions are all set by
the collision and are independent of one another.

Note that the individual electron transitions may
contain effects of time ordering. Except for the first
order term, the (T 2 Tav) terms can and often do
contribute to each order in perturbation theory. Thus,
for example, in single electron transitions time order-
ing may play a role in higher order terms. This also

applies to each of the independent electron terms in an
uncorrelated limit for multiple transitions where one
has a product of independent single electron terms.
However, in multiple electron transitions there is no
time ordering between transitions without spatial
electron correlation. This null result for cross terms in
multiple electron transitions holds to each order in a
perturbation expansion.

If electron exchange is included, then an exchange
effect in time may arise which would be included in
the uncorrelated independent electron limit (according
to most present conventions). Here this complication
is avoided by considering only fast collisions where
electron exchange is small.

Conceptually the time clocks of the transitions are
interdependent only if the electrons are interdepen-
dent, i.e. correlated. When correlation is included then
effects of time ordering arise [3]. These effects cause
the factor of two difference in total ionization cross
sections by impact of particles and antiparticles via
theZ3 effect [2]. Transitions can be sequential only if
there is electron correlation. Without electron corre-
lation all transitions may be regarded as simultaneous.
There is no sequencing or time ordering. The lack of
simultaneity in multiple electron transitions has not
been well explored experimentally in atomic reac-
tions.

3.2. Correlated systems

If correlation is nonzero, thenH0 5 ¥j H0j 1
¥j,k vjk, where vjk the correlation interaction is
nonzero. The matrix elements ofVI(t) in Eq. (6) are
now two-electron matrix elements, e.g.VIj(t0) de-
pends on both electrons and it is generally not
possible to commuteVIj(t0) with VIk(t9) since [vjk,
¹2] Þ 0. Now the ordering of theVIj(t0)Ik(t9) terms
can make a difference. With correlation time order-
ing contributes in the cross term of Eq. (6). Con-
sequently the evolution overt0 is coupled to the
evolution overt9.

Physical energy may be exchanged between the
two electrons via the correlation interactionvjk. Cor-
relation energy influences the propagation in the
intermediate states and^fuTVIj (t0)VIk(t9)ui & may dif-

68 J.H. McGuire et al./International Journal of Mass Spectrometry 192 (1999) 65–73



fer from ^fuTVIk(t0)VIj (t9ui & in Eq. (6). For example
one transition corresponding toVIj (t9) may depend
differently on t9 than another corresponding to
VIk(t9). Then the correlation interaction has more
time to rearrange the energy between the electrons in
one sequence than in another. Different sequences
contribute differently to the final overall transition
amplitude. The individual transition amplitudes gen-
erally vary with energy and consequently the fast–
slow order may have a different amplitude than the
slow–fast order of the transition. In other words the
probability amplitudes for different sequences of tran-
sitions may differ if electron correlation is nonzero.

3.2.1. Symmetric and antisymmetric time
propagation

It is instructive to consider the Fourier transform of
the time-ordered propagation in Eq. (3) above,
namely,

E dt e2iE9tQ~t!eiEt 5
i

E9 2 E 1 ih

5 pd~E9 2 E! 1 iPv

1

E9 2 E

(8)

HerePv denoted the principle value. Eq. (8) describes
propagation inE space (conjugate to time space). In
Eq. (8) the energy propagator is separated into terms
symmetric and antisymmetric in energyE, which in
turn corresponds to separation of the time propagation
into corresponding terms symmetric and antisymmet-
ric in time. The time ordering is carried by the1ih
term which eliminates terms that increase exponen-
tially in time. It means that there are incoming plane
waves propagating from some initial state which are
later scattered. If there is no time ordering, thenT 5
2Q(t0 2 t9) in Eq. (8) is replaced by a constant
namely, T 5 Tav 5 2Qav(t0 2 t9) 5 1 (and not 2
to avoid double counting), which is symmetric in
time. Now one has the obvious result that* dt e2iE9t1/

2eiEt 5 pd(E9 2 E). We note that the (T 2 Tav) terms
are rotated by 90° in the complex time plane with respect
to the (usually dominant)Tav operator.

The time-ordering operatorT 5 Q(t0 2 t9) is
now separated into two terms,T 5 (Tav) 1 (T 2

Tav) and is used in the cross term of Eq. (6), namely,

UI,12
~2! ~tf , ti! ;

~i !2

2! E
ti

tf

T @VI1~t0!VI2~t9!

1 VI1~t9!VI2~t0!] dt0 dt9

5
~i !2

2! E
ti

tf

Tav@VI1~t0!VI2~t9!

1 VI1~t9!VI2~t0!] dt0 dt9

1
~i !2

2! E
ti

tf

~T 2 Tav!@VI1~t0!VI2~t9!

1 VI1~t9!VI2~t0!] dt0 dt9 (9)

The first term withTav is symmetric in time and
carries no time ordering. This term may be written
usingTav 5 2^Q&av 5 1. The second term with (T 2

Tav) is antisymmetric in (t0 2 t9), corresponding to
the antisymmetry ofiPv1/(E9 2 E) in Eq. (8). This
term insures causality and gives a direction to time in
the evolution of the system. TheT 2 Tav contribution
goes to zero if there is no correlation since thenT 2

Tav is antisymmetric in (t0 2 t9) and the rest of the
integrand is symmetric since theVI terms commute.

When correlation is included both the time sym-
metricTav and the antisymmetricT 2 Tav terms may
be affected [3,7]. The antisymmetricT 2 Tav term is
necessary for observable time-ordering effects since
theTav term does not contribute to sequencing. Thus,
with electron correlation from the spatialvjk correla-
tion interaction, sequential transitions may occur via
T 2 Tav. Then the transitions are correlated in both
space and time. As noted at the end of Sec. 2 there is
no time ordering without spatial electron correlation.
So time ordering in a two-electron transition occurs
only if there is spatial electron correlation. Electron
correlation in space causes time correlation (i.e. se-
quencing) in fast two-electron transitions.
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3.2.2. An example
As an illustrative example, let us consider a two-

electron transition between initial and final states,ui &
and uf&. The probability amplitude for such a transi-
tion may be expressed as

afi 5 ^f uUI~tf , ti!ui &

. ^f u1 1 i E
ti

tf

@VI1~t9! 1 VI2~t9!# dt9

1 ^f u
~i !2

2! E
ti

tf

T @VI1~t0!VI1~t9!

1 VI2~t0!VI2~t9!# dt0 dt9

1
~i !2

2! E
ti

tf

Tav@VI1~t0!VI2~t9!

1 VI1~t9!VI2~t0!# dt0 dt9

1
~i !2

2! E
ti

tf

~T 2 Tav!@VI1~t0!VI2~t9!

1 VI1~t9!VI2~t0!] dt0 dt9ui &

. i ~Z/v!c1 2 ~Z/v!2~c2 2 ic92! (10)

If the initial and final states are of well defined parity,
then the matrix elements are all real or imaginary
depending on the parity of the transition being even or
odd. The first term in the perturbation expansion is
zero since we assume that^fui & 5 0. The first order
terms are linear in the ratio of the projectile charge,Z
to the collision velocityv giving a coefficientc1

which is purely real (or imaginary). This term is
nonzero only if there is some electron–electron inter-
action between the two electrons, either initial state
correlation, final state correlation or shake. The terms
quadratic in eitherVI1 or VI2 may contain time-
ordering independent of electron–electron interac-
tions. WhenZ/v and electron–electron effects are
both small, say ordere, then these terms are of order
e3 and the other terms are of ordere2. Thus the

quadratic termsVI1
2 or VI2

2 may be small compared to
the cross terms inVI1 andVI2 which are retained in
the last line. TheTav contribution is a factor ofi out
of phase with theT 2 Tav contribution as discussed
above. Again for transitions of well-defined parityc2

andc92 are purely real (or imaginary).
As discussed previously [7], theZ3 term in the

transition probabilities and cross sections for the
two-electron transition arise from interference be-
tween the first-order term,i (Z/v)c1, and the (T 2
Tav) contribution containing time ordering from the
second-order cross term,2i (Z/v)2c92. Thus theZ3

term requires nonzero contribution from (T 2 Tav),
which is the part ofT that causes sequencing of the
two transitions. This is a correlation in time in that it
gives a relation between the times of the two transi-
tions and also in that it represents a deviation from a
mean value [3]. This (T 2 Tav) contribution requires
electron correlation to be nonzero. TheZ3 term also
requires c1 to be nonzero which in turn requires
nonzero electron–electron interactions from the first-
order term which is dominant in the high velocity
limit.

3.2.3. Invariance of time-charge symmetry
A convenient way to isolate the influence of the

T 2 Tav propagation is to use the symmetry of time
and charge. Note from Eq. (2) that the product of the
charge and time symmetries ofV(t) is invariant if
V(t) is symmetric in time, which is often the case.
Thus, whenever the sign ofZ is odd, the time
propagation is antisymmetric. This invariance applies
to transition probabilities and cross sections as well as
amplitudes in fast ion–atom collisions [7]. This is an
invariance of charge conjugation and time reversal for
the external interaction. This differs from usual#7
(charge conjugation and time reversal) invariance
which applies to all particles in the system. Further-
more, for electromagnetic interactions considered
here for atomic systems, both# and7 are invariant.
This is due to a phase convention introduced by
Wigner [10] wherei 3 2i under both# and7. 7
invariance, for example, is satisfied byTav and also by
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T 2 Tav since from Eq. (8) it follows thatTav and
(T 2 Tav) are a factor ofi out of phase.

By restricting attention to the time and charge
symmetry of the interaction potentialV(t) only, one
may probe in more detail time structures in dynamics
of many-electron systems. We suggest looking for
observable differences in transition probabilities when
the sign ofV(t) is reversed. These differences occur
only when time ordering arising fromT 2 Tav is
present. This corresponds to differences in the se-
quence in which transitions occur.

4. Discussion

In this article we have considered time ordering in
a general way and have shown that one may expect
effects of time ordering in two-electron transitions at
moderately high velocities in ion–atom collisions if
there is interference between the time antisymmetric
part of the time-ordering operator (T 2 Tav). This is
the term that causes the two transitions to be not
simultaneous, i.e. it causes sequencing. This sequenc-
ing occurs because the electrons interact with each
other. Whenever such effects occur, there are asym-
metries in the dependence of the probability and cross
section on the charge of the projectile,Z. The devel-
opment is limited here to the validity constraints of
second-order perturbation expansions inZ/v and cor-
relation which is also small. It would be useful to have
detailed calculations of specific reactions which pre-
dict effects of time ordering that are experimentally
testable.

An example of a reaction where such effects are
expected to occur is double excitation and double
ionization of atoms and molecules by incident ions.
We note that such a largeZ3 effect is surprisingly
large since it is restricted by quasiselection rules [11].
In double electron excitation of helium such effects
are remarkable both in cross section of excitation and
resonance yield of autoionizing electrons [12] not to
mention effects in the line profiles of the Auger
transitions from the doubly excited states [13,12].
However, if the autoionizing nature of the double
excited states of helium is not taken into account then

Z3 effects in the double electron excitation are not
large [12]. In double ionization of helium thisZ3

effect [14] can be a factor of 2 forZ/v . 10 a.u. in
total cross sections. Some results [15,16] are also
available for H2 and H2. With the advent of the
COLTRIMS method for observing differential cross
sections [17], it may be possible to probe this effect in
more detail and look for regions where the effect may
be even greater than a factor of 2 [3,4].

Another intriguing possibility is to look in differ-
ential spectra for transfer ionization. Here relatively
little has been done to look for such effects although
excellent COLTRIMS data [17,18] has recently be-
come available in helium for proton energies ranging
from v 5 2 to v 5 10 a.u. In this data evidence has
been found for both independent capture and ioniza-
tion by the projectile and also for a second-order
effect where one electron knocks out a second elec-
tron during a two-step capture process. Theory for
both is available [19–22] as is theory for both
shakeoff and shakeover [3]. In differential cross
sections one may vary the scattering angle (or mo-
mentum transfer) as well as the charge of the projec-
tile to change the relative importance of various
scattering amplitudes. This case would be interesting
since one could explore the question, which is more
likely to occur first: transfer or ionization? and why?

Some of the approximations used here include use
of perturbation theory, neglect of electron exchange,
and use of the interaction picture. Although no de-
tailed work has been done to explicitly show whether
or not any of these approximations introduce con-
straints fundamental to the physics in other regimes, it
may be possible that some of the basic results includ-
ing the need for spatial correlation to produce se-
quencing between transitions and the invariance of the
sign of charge and time symmetries of the projectile
could be independent of these approximations as is
suggested by the general nature of our discussion in
Secs. 3.1 and 3.2.3. Of course at moderate to low
collision velocities the many-electron problem be-
comes generally more difficult [23,24]. We have also
written the formulation in such a way that one may
apply the results to impacts of photons. Time ordering
has been observed in interactions of photons with
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atoms [25]. These effects arise in observable phase
dependence of resonance fluorescence spectra. It is
well known that ion–atom and photon–atom collisions
are related within the constraints of first order pertur-
bation theory [3,26]. And some interrelation has been
suggested as well in the case of strong fields [27].

All transition sequences are identical if there is no
electron correlation. If, however, correlation is non-
zero, then electronic energies in the atomic system
rearrange and one transition sequence may be more
likely than another. In principle, the change in the
probability distribution arising from nonsymmetric
time evolution may be associated with a change in
entropy occurring in the dynamics many-electron
atomic transitions. The spatial electron correlation
also provides mechanisms for electrons to communi-
cate about time, i.e. to generate time correlations
among multiple-electron transitions.

5. Summary

In summary, if two or more electrons are uncorre-
lated in space (i.e. the correlation potentialvjk 5 0),
then transitions of these electrons occur indepen-
dently. In this uncorrelated limit, the electrons evolve
independently in time. On the other hand, if the
electrons are correlated (i.e.vjk Þ 0), then the
transition of one electron can affect the time evolution
of the other electron(s). In the interaction picture
correlation in time is carried by the partT 2 Tav of
the time-ordering operatorT which is antisymmetric
in time. It is this part ofT that gives unequal weight
to the time ordering of the interactions causing the
electron transitions. Thus, correlation in time between
transitions of different electrons carried byT 2 Tav is
connected to spatial electron correlation due to the
electron–electron interactionvjk. Also the product of the
time ordering and charge symmetries of the projectile is
invariant. Thus one may be able to examine the role of
time sequencing in the production of multiply charged
ions by studying cross sections and transitions where
observableZ3 effects are present.
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